
CHAPTER

NINETEEN

CONTRASTS AND COMPARISONS

The systems discussed in this book span the important ideas for coordinated
computing. The variety of mechanisms and structures in these systems may seem
staggering. But as we argued in Chapter 5, most of the important di�erences can
be described as choices in a decision space. This chapter has three sections. In
the �rst, we review the choice dimensions and describe where each system lies in
the decision space. We summarize these results in a series of tables. The second
section discusses speci�c common themes in greater detail. Often systems are
re�nements of earlier ideas; this section conveys some of this historical develop-
ment. In the last section we propose a uni�ed model, showing how an appropriate
set of primitives is su�cient to achieve any of the behaviors.

19-1 GENERAL COMPARISONS

Dimensions of Distribution

In Chapter 5, we identi�ed 12 key dimensions in the design of coordinated com-
puting systems. In this section, we review these dimensions, ascribing to each
system its place in the dimension space.* The di�erences among systems are best
summarized in tabular form. Unfortunately, a table of 12 dimensions and 18 sys-
tems would be incomprehensible. Instead, we have broken our table into three
parts: (1) Table 19-1 examines the general goals and structure of each system,
(2) Table 19-2 exhibits aspects of intrasystem communication, and (3) Table 19-3
presents the systems with respect to the remaining dimensions.

* Other authors who have pursued the theme of comparisons of concurrent and distributed

languages include Andrews and Schneider [Andrews 83], Mohan [Mohan 80], Rao [Rao 80], and

Stotts [Stotts 82].

325

326 contrasts and comparisons

Problem Domain (A) The systems described in this book range from sim-
ple models to elaborate languages. Much of this diversity arises from di�erences
in task domains; the di�erent systems are meant to be solutions to di�erent
problems. The models tend to be mathematical. For example, Shared Variables
is a tool for studying algorithmic analysis and program correctness; Concurrent
Processes, program semantics; and Petri Nets, system correctness. The program-
ming languages focus on the problems of writing programs. They divide into the
\general-purpose" or pragmatic languages (PLITS), programming languages di-
rected at implementing operating systems (Concurrent Pascal, Distributed Proc-
esses, SR, and Cell), and languages concerned with the issues of particular sub-
problems of operating systems (Ada, embedded systems; and Argus, distributed
databases). The heuristic systems (Distributed Hearsay-II, Contract Nets, Ether)
focus on organizing distributed problem solving.

Some systems assume an intermediate point between these extremes: CSP
is not only a language for systems implementation but also a model of both
hardware and program semantics; Actors and IAP strive both to have a well
de�ned semantics and to be pragmatic programming environments. And lastly,
Exchange Functions, while in many ways similar to the formal Concurrent Proc-
esses, is directed toward a completely di�erent goal| requirements speci�cation
for program development.

Of course, we mean these distinctions to capture the thrust of a system
design, not the minor intentions. Languages for systems implementation must
be concerned with the pragmatic problems of programming. Accompanying the
design of many new programming languages is an attempt to provide their formal
semantics. And good models often correspond to the reality of building the kinds
of systems they model. Nevertheless, understanding the di�ering intentions of the
system designers is an essential component for understanding the diversity in the
designs.

Explicit Processes (B) These systems all support concurrent computation.
One issue for concurrent systems is designating which actions can be executed
concurrently. Almost all our systems use explicit processes to show concurrency.
In explicit process systems, the programmer causes process entities to be created.
Once created, these processes compute concurrently (subject to various synchro-
nization constraints). Most systems call their processes, \processes." Occasion-
ally, a system uses another name for the same concept: tasks in Ada, modules in
PLITS, actors in Actors, cells in Cell, and sprites in Ether.

Despite the popularity of processes, not all systems use them. Four systems
indicate concurrency without processes. In IAP, each call to cons and frons creates
a suspension (a form of task) to be resolved by the underlying system. This task
will be satis�ed either lazily, by otherwise idle resources, or immediately, driven
by a demand for its answer. Distributed Hearsay-II combines the pattern-directed
invocation of productions with the broadcast communication of blackboards.
And Data Flow and Petri Nets abstract concurrency by the independent
ow of
graph tokens.

contrasts and comparisons 327

For the sake of comparison, we treat concurrency in IAP as the concurrency
of the underlying evaluators (communicating through the realization of cell val-
ues), concurrency in Distributed Hearsay-II as the concurrency of knowledge
sources, and concurrency in Petri Nets and Data Flow as the concurrency of the
transitions and actors communicating with tokens.

Process Dynamics (C) Process dynamics describes the change in number and
variety of processes through the execution of a program. Some systems allow pro-
grams to create new processes during execution. Others require that all processes
be de�ned at system creation (static processes). Shared Variables, Exchange
Functions, Petri Nets, Data Flow, CSP, Concurrent Pascal, Distributed Proc-
esses, SR, Distributed Hearsay-II, and Contract Nets are static process systems.

Two di�erent syntactic mechanisms support dynamic process creation, ex-
plicit allocation (dynamic) and lexical program elaboration (lexical). Systems
with explicit allocation have a statement to create a new process, much as Pas-
cal has a statement to allocate a new record. Actors, IAP, Ada, and PLITS have
explicit process allocation. Lexical elaboration creates processes by combining
declarations with recursive program structures. That is, if procedure P declares
process A and then calls itself recursively, the recursive invocation of P creates
another copy of A. Concurrent Processes, Ada, PLITS, Cell, Argus, and Ether
create new processes by lexical elaboration.

By and large, pragmatic systems more frequently allow dynamic process
creation than systems-oriented languages. Systems based on compilation restrict
new processes to be described by a \type," though processes may be special-
ized by parameterization. Some interpreted systems (such as Actors) allow the
description of a process to be generated at the time the process is created.

Systems with explicit allocation ought to provide names (pointers) to the
newly created processes. These names can then be passed between processes,
allowing other processes to become aware of the new processes and send them
messages. Lexical process creation often restricts interprocess communication to
lexical scopes.

Synchronization (D) The di�erences that distinguish concurrent computa-
tion from simple serial processing center on communication and synchronization
among processes. The �rst notable division between systems is the issue of syn-
chronous versus asynchronous communication. In synchronous communication,
both processes \attend" to the communication. Every communication request is
matched by a reception; a process cannot send a second communication until the
�rst has been handled. In asynchronous communication, processes send requests
without regard to their reception; a process is free to send a request and continue
computing.

Ten systems are asynchronous: Shared Variables, Petri Nets, Data Flow,
Actors, IAP, Concurrent Pascal, PLITS, Distributed Hearsay-II, Contract Nets,
and Ether. SR provides both synchronous and asynchronous communication.
The other systems are synchronous.

328 contrasts and comparisons

Table 19-1 Goals and Structures

(A) (B) (C)

System Task domain Explicit Process

processes dynamics

Shared Variables Analysis, Processes Static

Lynch & Fischer correctness

Exchange Functions Requirements Processes Static

Fitzwater & Zave speci�cation

Concurrent Processes Semantics Processes Lexical

Milne & Milner

Petri Nets Correctness, Structure Static

Petri modeling

Data Flow Pragmatics Structure Static

Dennis/Arvind & Gostelow

CSP Systems, Processes Static

Hoare semantics

Actors Pragmatics, Processes Dynamic

Hewitt semantics

IAP Pragmatics, Tasks Dynamic

Friedman & Wise semantics

Concurrent Pascal Systems Processes Static

Brinch Hansen

Dist. Processes Systems Processes Static

Brinch Hansen

Ada Systems Processes Dynamic,

DoD (embedded) lexical

PLITS Pragmatics Processes Dynamic,

Feldman lexical

SR Systems Processes Static

Andrews

Cell Systems Processes Lexical

Silberschatz

Argus Systems Processes Dynamic

Liskov (database)

Dist. Hearsay-II Problem Productions Static

Lesser & Corkill solving

Contract Nets Problem Processes Static

Smith & Davis solving

Ether Problem Processes Dynamic

Kornfeld & Hewitt solving

contrasts and comparisons 329

Bu�ering (E) A system's bu�er size is the number of messages from a given
process that can be pending at one time. The interesting distinction is between
systems with bounded bu�ers and systems with unbounded bu�ers|that is, sys-
tems for which a process's pending messages can occupy only a limited space in
contrast with systems that allow a process to send an unbounded number of mes-
sages. Synchronous systems invariably have bounded bu�ering|a synchronous
process can have only a �nite number of pending messages.* Message-based,
asynchronous systems (Petri Nets, Actors, PLITS, SR, and Contract Nets) have
unbounded bu�ering, as do pattern-invocation systems (Distributed Hearsay-II
and Ether). One version of Data Flow uses bounded bu�ers [Dennis 74], another
unbounded [Arvind 77]. Additionally, some systems (Shared Variables, IAP, Con-
current Pascal, Ada, and SR) permit processes to share memory. Shared memory
is a form of bounded, asynchronous communication.

Information Flow (F) Interprocess communication is the transfer of informa-
tion. Clearly, the mere occurrence of a communication is informative. Thus (par-
ticularly in synchronous systems), communication provides a synchronization
signal. However, it is usually desirable to transmit more than pure synchroniza-
tion|e�ectively, to transmit information. The various systems propose di�erent
organizations for information
ow. For some, communication provides a sender
and a receiver; the information
ow is unidirectional (uni) from the sender to the
receiver. Of course, unidirectional communication is a consequence of message-
based asynchronous systems (Petri Nets, Data Flow, Actors, PLITS, Contract
Nets, and the asynchronous primitive in SR). Only a single synchronous system
(CSP) has unidirectional information
ow.

Shared memory introduces its own nuances of information
ow. Shared mem-
ory is naturally asynchronous. In its simplest form, like IAP, Distributed Hearsay-
II, and Ether, it is unidirectional, from a \writer" to a \reader." Monitors in
Concurrent Pascal structure the exchange to be bidirectional|�rst, a transfer
of information to the monitor and then a reception of return values. In Shared
Variables, the exchange is (for read-write processes) somewhat the opposite|
�rst a value is received from the variable and then the variable is set to a new
state.

Synchronous communication can be treated either as a single, instantaneous
event or as an event that progresses through stages. The �rst of these is simulta-
neous, bidirectional communication (bi-sim). Exchange Functions and Concur-
rent Processes have simultaneous, bidirectional communication. The synchronous
programming languages have delayed bidirectional communication (bi-del). In
this organization, processes enter a rendezvous. In rendezvous, the requesting
process transfers information to the called process. This process then computes

* Naively, it would seem that a single-message bu�er would su�ce for synchronous systems.

However, systems with output guards can have a pending message for each guarded output

clause.

330 contrasts and comparisons

a response and sends that response back to the original caller. This pattern,
the remote procedure call, is a generalization of the procedure call, with its
stepwise transfer of query and control to the called procedure, the execution
of the body of the procedure, and the return of answers and control to the
caller. Distributed Processes, Ada, SR, Cell, and Argus use delayed bidirectional
communication.

Strangely, none of the models or languages has generalized the coroutine
as a communication model. Such a generalization would provide �rst an estab-
lishment of communication and then an alternation of information transfer and
computation through the entire transaction. However, processes are adequate
coroutines of and by themselves; in any system that provides some �ltering of
message reception it is straightforward to obtain this control pattern.

Communication Control (G) The various models and languages show the
most diversity in mechanisms for establishing communication. To handle this
variety, we break this dimension into two parts, control and connection. Control
concerns the actions that processes take to communicate, including the facili-
ties they have for choosing a communication partner. Connection is an issue of
naming: to what does a communicating process refer?

Seven systems (Shared Variables, Exchange Functions, Concurrent Proc-
esses, CSP, IAP, Concurrent Pascal, and Distributed Hearsay-II) treat com-
municators as equals (equal). In Exchange Functions and Concurrent Proc-
esses, communicating processes take identical actions. Exchange Functions al-
lows processes to test whether communication is available and to abort a
communication attempt if it is not (immed. time-out). CSP treats processes
(roughly) as equals. It introduces asymmetry with unidirectional information

ow. Input guards (and, extensionally, output guards) provide further concur-
rency control (I/O guards). In Shared Variables, IAP, and Distributed Hearsay-
II, communication is anonymous and nondirective. Processes asynchronously
read and write shared storage. No process has, a priori, a distinguished role.
In Concurrent Pascal, processes communicate through shared monitors. Proc-
esses do not address each other directly; hence, communicating processes are
equals.

The other systems specify roles for the \calling" and \called" processes.
Petri Nets, Data Flow, Actors, Distributed Processes, Argus, and Ether treat
the called process as a passive server (passive) that accepts requests with-
out controlling the order of their reception. (However, Distributed Processes
programs can then use guarded commands to order accepted requests.) Ada,
PLITS, SR, Cell, and Contract Nets allow the called process some freedom in
choosing which requests to serve (active). All segregate requests into groups.
In Ada, SR, and Cell, requests are grouped by entry queues; in PLITS, by
transaction keys. All but PLITS have input guards to read from one of sev-
eral queues at once (i-guard); all have functions to determine if a particular
queue is empty.

contrasts and comparisons 331

Additionally, some languages add their own features for communication con-
trol. PLITS, SR, and Cell allow �ltering of requests by origin (send-�lt); SR and
Cell, ordering requests by priority (priority); and SR, guards that can examine
not only the internal state of the process, but also the message (mess-grd). Ada
allows both input and output guards and permits time-outs by both the call-
ing and called processes. Concurrent Pascal and Cell can suspend processing a
request and then later resume it (suspend).

Connection (H) These systems use four di�erent syntactic forms to channel
communication: ports, names, entries, and pattern-selective broadcast. These
syntactic devices can be used by the sender, the receiver, or both the sender and
the receiver of the communication.

Communication through a symbol external to communicating processes is
communication through a port (port). Shared memory systems (Shared Vari-
ables, IAP, and Concurrent Pascal) use ports, where the shared memory is
the port. Additionally, Exchange Functions and Concurrent Processes use ex-
plicit ports. We view the shared places of Petri Nets as another form of port.
Data Flow, Actors, and PLITS direct communication at an unmodi�ed process
(name). None of these systems requires the receiver of a communication to de-
scribe the sender. However, PLITS processes can �lter requests by transaction
keys (key-�lt), using the transaction keys as a kind of entry mechanism.

Several of the languages (Distributed Processes, Ada, SR, Cell, and Argus)
focus communication on an entry (entry) in the called process. In Ada, SR,
and Cell, a called process can have several entries and accept requests from
them in an order determined by program control. In Distributed Processes and
Argus, entries are not explicitly referenced by the recipient program. CSP pattern
matching serves a similar �ltering purpose.

Three heuristic systems, Distributed Hearsay-II, Contract Nets, and Ether,
specify subproblems as tasks and distribute these tasks in a broadcastlike fashion.
On the basis of the pattern-described interests of the processing elements, the
system directs relevant messages to them.

Time (I) Einstein asserted that time is relative. Relativity arises because the
information of an event cannot travel faster than the speed of light. Lamport
has argued that a similar principle applies to distributed computing systems
[Lamport 78]. In a distributed system, it is meaningless to refer to the absolute
\time" at which an event happened, particularly from the perspective of a single
process. Instead, the information of an event di�uses, through communication, to
interested processes. Processes can only be synchronized, not made simultaneous.
Whenever a model or language argues that some communication event is to abort
because of time-out, it is natural to ask, \Which process timed the time-out?"

This ambiguity about time leads to an ambivalence about time by the more
mathematical models and languages. Most of them avoid the subject entirely; the
few that mention the problem (such as Shared Variables) discount its signi�cance.

332 contrasts and comparisons

Table 19-2 Communication

(D) (E) (F) (G) (H)

System Synch. Bu�er. Inform. Commun. Commun. Connection

ow control send. rec.

Shar. Var. Asyn. Bnded. Bi-Mem Equal Port Port

Ex. Fun. Syn. Bnded. Bi-Sim Equal Port Port

i'm. t.-o.

Con. Proc. Syn. Bnded. Bi-Sim Equal Port Port

Petri Nets Asyn. Unbnd. Uni. Pass. Port Port

Data Flow Asyn. Bnded./ Uni. Pass. Name ||

Unbnd.

CSP Syn. Bnded. Uni. Equal Name Name

I/O-grd. pat.-mat. pat.-mat.

Actors Asyn. Unbnd. Uni. Pass. Name ||

IAP Asyn. Bnded. Uni. Equal Port Port

Con. Pas. Asyn. Bnded. Bi-Mem Equal Port Port

susp. w/entry w/entry

Dist. Proc. Syn. Bnded. Bi-Del Pass. Entry ||

Ada Syn. Bnded. Bi-Del Act. Entry Entry

I/O-grd.,

time-out

PLITS Asyn. Unbnd. Uni. Act. Name Key-�lt.

send-�lt.

SR Syn./ Bnded./ Bi-Del/ Act. Entry Entry

asyn. Unbnd. Uni. I-grd.,

mess-grd.,

send-�lt.,

prior.

Cell Syn. Bnded. Bi-Del Act. Entry Entry

I-grd.,

send-�lt.,

prior.,

susp.

Argus Syn. Bnded. Bi-Del Pass. Entry ||

DH-II Asyn. Unbnd. Uni. Equal Broad. Pat. mat.

Con. Nets Asyn. Unbnd. Uni. Act. Broad. Pat. mat.

Ether Asyn. Unbnd. Uni. Pass. Broad. Pat. mat

This re
ects the attitude that since time is inherently ambiguous any possible
formalization is vacuous.

The systems languages, needing to deal with the real world, must take the
opposite attitude: \Time may be relative, but if it has been one millisecond

contrasts and comparisons 333

(one second, one minute, one day, : : :) since I sent that message and I have
not received a reply, the other process is not going to respond."* Only three
of the systems have mechanisms for direct temporal manipulation: Exchange
Functions's immediate exchange function, Ada's delayed input and output select
statements, and the ability of Argus actions to �rst delay and then kill sibling
actions. In some ways, Ether is especially atemporal|sprites have access not
only to communications sent after their creation but also to those sent before.

Fairness (J) Fairness concerns the bounds on the delay that a process faces
before achieving access to a resource. Most of our concerns are with communi-
cation fairness, since processes interact through communication. However, there
are also fairness considerations involved in processor allocation and peripheral
device control. Our systems exhibit three attitudes towards fairness. In an anti-

fair system a process can be inde�nitely blocked from getting a resource. Weak

fairness implies that a process is sure to get the resource eventually. Strong fair-

ness demands that processes get resources in turn. In a strongly fair system, it is
possible to determine a �nite upper bound on the number of other requests (of
equivalent priority on the given request structure) that will be served before a
given request. One common mechanism for enforcing strong fairness is to queue
waiting requests. With a queue, a process waits only for those processes ahead
of it in line.

Interestingly, there is only a weak correlation between attitudes towards fair-
ness and other dimensions of system organization. Concurrent Processes, Petri
Nets, Data Flow with indeterminate-merge,y CSP, Argus, Distributed Hearsay-
II, Contract Nets, and Ether are explicitly antifair. Shared Variables, Exchange
Functions, IAP, and Actors have weak fairness. For example, in Shared Vari-
ables, every process eventually takes another step; in Actors, every message is
eventually received and processed. Distributed Processes, Ada, PLITS, SR, and
Cell are queue-based systems and are, in some respects, strongly fair.

Failure (K) Most models and languages treat processes as fault-free automata
and communication as invariably successful. However, several systems have some
mechanisms for dealing with failure. With the frons statement, IAP encourages
convenient redundancy. Ada has several mechanisms for handling failure and
distributed termination, including time-outs and exception handlers. Contract

* The software controlling the �rst
ight of the space shuttle Columbia provided a graphic

illustration of the di�culties of programming multiprocessor systems that depend on intricate

timing relationships [Garman 81]. Because a central clock would send di�erent processors

di�erent times, the programmers of the shuttle controller used an ad hoc arrangement to

provide processors with identical times. This system had a bug that, with low probability,

allowed the processors to initialize to a permanently unsynchronized state. Unfortunately,

when the system was brought up for the planned launch, it fell into this state. This forced a

delay of the shuttle
ight until the bug was found and �xed.
y Fairness is not an issue in determinate systems.

334 contrasts and comparisons

Table 19-3 Other issues

(I) (J) (K) (L)

System Time Fairness Failure Heuristics

Shar. Var. || Weak || ||

Ex. Fun. Instantaneous Weak || ||

time-out

Con. Proc. || Anti || ||

Petri Nets || Anti || ||

Data Flow || Anti || ||

CSP || Anti || ||

Actors || Weak || ||

IAP || Weak Convenient ||

redundancy

Con. Pas. || Anti || ||

Dist. Proc. || Strong || ||

Ada Delayed Strong Exception Distributed

time-out handlers, termination

distributed

termination

PLITS || Strong || ||

SR || Strong || ||

Cell || Strong || ||

Argus Delayed Anti Atomic Atomic

time-out actions, actions

exception

handlers

DH-II || Anti Evidence Pattern-directed

invocation

Con. Nets || Anti Contract Contracts

managers

Ether Anti-time Anti Evidence Pattern-directed

invocation

Nets allows the manager of a contract to monitor its progress. Argus provides
perhaps the most comprehensive set of conventional failure mechanisms, wrap-
ping each remote call in an atomic action and allowing exception handlers to
deal with the failures of these actions. Distributed Hearsay-II and Ether rely on
weighing evidence in drawing conclusions, using the natural redundancy of their
processing organization to immunize against failure.

contrasts and comparisons 335

Heuristic Mechanisms (L) Five systems have speci�c heuristic mechanisms.
Ada provides a primitive for coordinating distributed termination of a set of
processes. Argus, extending this idea, provides atomic actions. Contract Nets
implements the contract mechanism and negotiation as an organizing principle.
And Distributed Hearsay-II and Ether each have a version of pattern-directed
invocation for communication.

19-2 SPECIFIC COMPARISONS

Many of the themes of particular models and languages are echoed, with varia-
tions, in other systems. A set of systems that share several key properties form
a family of systems. We �nd the variations within a family noteworthy. In this
section we identify several concepts that de�ne families of systems and note some
general metaphors about models and languages.

Communication metaphors Human artifacts parallel human experience. One
contention of Chapter 18 is that human organizations are candidate models for
coordinated systems. We observe that the interprocess communication mech-
anisms of most of the systems resemble human communication mechanisms.
How do people communicate? Face-to-face, direct communication is the most
immediate form, but such proximity is the antithesis of distribution. The pri-
mary indirect interpersonal communication media are the telephone and the
mail. The directness and immediacy of the telephone parallel synchronous com-
munication. For example, in CSP communicating processes \call" each other.
However, CSP conversations di�er from human telephone calls in two important
respects: (1) once attempted, a call cannot be aborted; and (2) only a single
message is sent in a conversation. Guarded commands in CSP allow calling sev-
eral \phones" at once, waiting for the �rst to answer. Exchange Functions and
Concurrent Processes share the telephonic
avor of CSP, though they direct calls
to \central switchboards" (ports) instead of using \direct dialing." In Exchange
Functions, a process that would otherwise be required to wait for an answer can
\hang up."* The asynchronous communication of Actors and PLITS parallels
posting letters. One composes a message, drops it in the mail, and continues
one's activities.

The other important human communication media are broadcast (like mes-
sage boards, radio, and television) and archival (like books, records, and newspa-
pers). The communication medium of Shared Variables is like a bulletin board.
Messages are written and overwritten, without specifying for whom they are in-

* The synchronous communication of Distributed Processes and its derivatives is unlike this

phone metaphor, because the called party can consult arbitrarily many other processes between

accepting the call and responding|somewhat like being able to place arbitrarily many callers

on hold.

336 contrasts and comparisons

tended. Distributed Hearsay-II and Ether speci�cally relate their communication
organization to blackboards and libraries. No system has explored messages that
are generally but only intermittently available.

Functional and applicative formalisms Functional languages describe com-
putation as the result of successive applications of functions to input values.
Applicative languages, a close cousin of functional languages, emphasize the
binding of values to names along with function application. These languages
contrast with the assignment operation of imperative languages like Pascal. Five
of the systems (Exchange Functions, Concurrent Processes, Data Flow, Actors,
and IAP) are in some way functional or applicative. Exchange Functions and
Concurrent Processes center on processes with state. They use applicative syn-
tax only to describe the state-succession functions. The other three systems are
inspired by applicative and functional programming (and the earliest applicative
programming language, pure Lisp). IAP is a direct extension of pure Lisp to in-
clude nonevaluating cons and frons and functional objects. Except for the state
mechanisms of impure actors, the Actor model is a direct implementation of the
lambda calculus. We can easily program nonevaluating cons and frons operators
in Actors. In particular, a nonevaluating cons actor receives messages about po-
tential car and cdr �elds, remembers the messages, but does not act on them
until receiving the corresponding car and cdr requests.

It may strike the reader as odd that we classify Data Flow as an applica-
tive language. After all, the syntax of Data Flow (as we have described it) is
graphical. However, Data Flow graphs (without indeterminate-merge) are iso-
morphic to applicative notation. The concurrency in Data Flow computations
is the same as the concurrency provided by parallel argument evaluation in ap-
plicative languages. Therefore, Data Flow is, in some sense, just another syntax
for applicative programming. From this perspective, Data Flow is distinctive
principally for syntactic reasons. Data Flow has a simple syntax for construct-
ing functions with several outputs, allows in�nite structures without a special
letrec construct, and provides strong data typing. Data Flow su�ers from the
pragmatic disadvantage that the free form of the Data Flow graphs encourages
poorly structured programs. Also, unlike IAP, the \push" of Data Flow tokens
causes the computation to be done with call-by-value instead of call-by-need.

Indeterminate-merge transforms data
ow in much the same way that frons
transforms IAP and amb transforms LISP. Chapter 12 discusses the e�ect of
hypothesizing a split operation in suspending cons. Such an operator resembles
the inverse of indeterminate-merge. Instead of taking inputs from several lines
and merging them into a single stream, split takes a single stream and parcels it
out to several lines, feeding each line as it \needs" another token.

What would a Data Flow split operator be like? The split operator of sus-
pending cons presents the next data item to the output line that \needs" one
next. But since Data Flow is call-by-value, its split could not know which line
\needs" the next output.

contrasts and comparisons 337

Figure 19-1 Split actor with need lines.

A possible resolution of this di�culty would be to add explicit need inputs to
the split actor. Each output line from a split operator would have an associated
need input. Split would place a token on that line only if the corresponding need
input had a token. In doing so, it would consume the need token. Figure 19-1
shows a split actor with need lines.

Filling split is a possible alternative mechanism for introducing split to Data
Flow. Filling split has a single input line and several output lines. It is enabled
when there is a token on its input line. On �ring, it transfers this token to one of
its output lines that does not currently hold a token. Although �lling split cannot
match split's ability to divide an input stream among several deserving outputs,
it can apportion work roughly according to demand among several successors.

Synchronous models One family of models is the systems that communicate
by immediate, synchronous messages: Exchange Functions, Concurrent Proc-
esses, and CSP. These models di�er in details: Concurrent Processes allows dy-
namic process creation, while Exchange Functions and CSP require static proc-
esses. Exchange Functions and Concurrent Processes have bidirectional com-
munication through ports, while CSP uses mutual naming modi�ed by pattern
matching. Concurrent Processes was de�ned to investigate the mathematics of
concurrent computation; Exchange Functions, to aid in the design of systems.
CSP serves a dual purpose, both as a mathematical model and as a systems
implementation language. We �nd it interesting that such diverse domains give
rise to such similar systems.

Perspectives on queue control When several requests are pending for a par-
ticular process, the system must decide which request to handle next. Some
systems specify that no particular service order is de�ned: requests are served
arbitrarily. Models tend toward this approach, as they are more mathemati-
cal, and antifairness is easier to express mathematically. In particular, CSP and
Actors treat all waiting requests equally.

338 contrasts and comparisons

Languages designed for systems development tend toward the opposite ex-
treme. These languages often have elaborate rules for deciding the next request
to be processed. These mechanisms express the programming tradition of giv-
ing the system implementor maximum control of the computing environment,
balanced only by the requirements of straightforward implementation and e�-
cient execution. In our systems languages we see a progression of mechanisms
for queue control. Our �rst such language, Distributed Processes, sorted calls
only by their destination procedure. Ada and SR developed this idea of grouping
calls, resulting in the concept of task entries, that serve, like monitor procedures,
as collectors of requests, but can appear in several places in the program. Entries
also began to acquire attributes of their own. In particular, a program can count
the requests waiting on an entry.

PLITS, a contemporary of Ada, uni�ed all entries into a single queue but pro-
vided the �rst �ltering on that queue: processes can select messages by sender or
transaction key. Feldman presented the rationale of that decision as [Feldman 79,
p. 359]:

One would like a module to be able to do quite selective receive's and not be bothered with

messages that it was not ready to process. For example, one could allow receive to take an

arbitrary predicate on the values of slots in the message. There are several di�culties. One

cannot build into the system all the generality that might ever be required|for example,

a module might want to receive that message that has the greatest value for some slot.

Another problem is that having very selective receive's puts a great burden on the system

for storing, checking, and keeping track of messages. Finally, there are problems of de�ning

the correct sequencing for messages that are being controlled by complex predicates. The

de�nition we have chosen is a compromise. Clearly, having receive only specify the source

is too restrictive.

He proceeded to show that many di�erent control regimes can be encoded by
transaction keys.

SR adapted the PLITS mechanism of sorting messages by sender and added
features of its own: guard and priority clauses based on the values in the message
itself. Cell extended these mechanisms with provisions for examining a request
and returning it to a suspended state. What Feldman feared as too complex
(sorting for the message with the greatest value on some slot) has become the
routine of later languages.

What is gained by more complex sorting mechanisms? If the system hides
a sorting mechanism, some complicated programs are easily expressed. This is
particularly so when one wants the request that is extreme in a way that can be
mapped onto the sorting mechanism. In such circumstances, a primitive that
selects extremities dramatically simpli�es the program. Is SR's approach the
ultimate in queue control? Feldman hinted at the answer to this question with his
mention of arbitrary predicates. We imagine predicates as objects to be applied
to the elements of the queue. Additionally, some criteria are attributes of the
queue as a whole. For example, on a given entry, a process might want to select
a member of the class of requests with the greatest number of pending calls.

contrasts and comparisons 339

Such a decision involves examining not only the individual elements but also
the queue as a whole. Such a control structure is a step beyond the current
proposals.

Asynchronous message systems Two systems center on asynchronous mes-
sages, Actors and PLITS. Though di�erent in appearance (PLITS has an imper-
ative syntax, while Actors is applicative), they are at heart similar. Both systems
are based on messages and recognize the importance of being able to pass proc-
ess names in messages. Both thereby allow a form of continuation. Actors is
primarily a model. It provides only a minimal set of primitive mechanisms and
rules restricting the behavior of these primitives. PLITS carries the asynchronous
message metaphor into practice. It extends this metaphor by adding structure
to messages and message receptions. The most important operational di�erence
is that in PLITS, messages sent from the same sender with the same transac-
tion key arrive in the order sent. Actors does not guarantee any such ordering.
In practice, the PLITS restriction requires a fairly complicated communication
protocol; the Actor perspective may prove more realistic in megacomputing sys-
tems. This di�erence notwithstanding, PLITS can be viewed as a pragmatic,
imperative implementation of the actor metaphor.

Processes The process concept is basic to most approaches to distributed com-
puting, but the de�nition of process varies among systems. All processes have
permanent storage and the power to compute. In some systems, processes are
objects; they can be dynamically allocated and deleted; they possess names that
can be passed in messages. In Cell, processes can even express \last wishes" to be
executed before they are deallocated. Other systems, for reasons of philosophy or
implementation di�culty, do not provide all these facilities. Limitations include
�xing the set of processes at compilation time and failing to provide process
names, thereby restricting the potential communication structure.

19-3 BASIS SYSTEMS

The systems have a variety of mechanisms. We are drawn to the question of
natural primitives and desirable extensions: What sets of primitives can describe
the behavior of our systems? What mechanisms built from these primitives best
support coordinated computing? In this section we discuss these two issues.

Seeking a Basis

We seek a primitive model, a basis model. We want an operational model, one
that describes what to do without specifying the details of an implementation.
We will not impose a syntax on our model, but we want the primitives of the

340 contrasts and comparisons

model to correspond directly to the familiar programming concepts they are
meant to emulate.*

Both Milne and Milner and Lynch and Fischer address formal equivalence
of concurrent systems. These authors show that a set of concurrent processes
is semantically equivalent to a single process with unbounded indeterminacy.
Hence, a simple extension of Turing machines will capture the formal semantics
of distributed systems. However, we �nd this formal result unsatisfying; it fails
to re
ect the operational reality of a distributed environment. Multiple process-
ing agents provide some e�ciency advantages, and distribution provides some
constraints. We want the basis model to re
ect these realities.

Our technique is to go through our list of dimensions, selecting a choice
for each dimension that encompasses the others. This results in a basis model;
restrictions of this model give us the individual systems discussed in Parts 2, 3,
and 4. A key theme of our discussion is protocols|how one system can model
another if its processes follow a particular pattern of actions.

Of course, the problem domain of our approach is modeling languages and
models. The �rst real dimension is explicit processes. Almost all the systems
use explicit processes. Four systems do not: Petri Nets, Data Flow, IAP, and
Distributed Hearsay-II. We can simulate Petri Nets with processes by having a
process for each transition and place, Data Flow by having a process for each
actor, IAP by creating new processes for each cons or frons, and Distributed
Hearsay-II by creating a process for each entry and knowledge source. Thus,
explicit processes are adequate to model any of our systems. Some systems al-
low processes to be (externally) suspended or destroyed. We can model this by
requiring processes to check between other communications to see if they should
spin or die.

Though a single process with unbounded indeterminacy can simulate any
number of other processes, it seems most natural to give our model dynamic
process creation. We identi�ed two syntactic mechanisms for creating new proc-
esses: lexical elaboration and explicit creation. Clearly, a system that creates new
processes by explicit command subsumes lexical elaboration. To model lexical
elaboration, we execute \create" instructions in place of process declarations. To
model a system of static processes, one merely fails to create any new processes
not required by the rest of the model.

Which is more primitive, synchronous or asynchronous communication? We
can easily model synchronous communication with asynchronous communica-
tion|processes obey a protocol that requires the sender of a message to wait
for an acknowledgment and the recipient of a message to send such an acknowl-
edgment. A system with static processes, textually guarded output statements,

* Reid's dissertation [Reid 82] is an attempt similar to this one. Its approach and its con-

clusions are both more comprehensive and more complex than the theme developed in this

section.

contrasts and comparisons 341

and synchronous communication cannot model asynchronous communication.
This is because an asynchronous message-based system can create an unbounded
number of pending messages, while a synchronous system with static processes
cannot have more than one pending message per process per output guard at
any time. A system with dynamic process creation and synchronous commu-
nication could mimic asynchronous communication by creating a \secretary"
process for each message and making that secretary responsible for completing
the communication.

We choose asynchronous communication for our model because it is easier
to express protocols asynchronously. Along the same lines, we give our model
unbounded bu�ers and unidirectional information
ow. Unbounded bu�ers can
certainly model bounded ones; bidirectional information
ow can be simulated
by a protocol of exchanged messages.

We identi�ed four varieties of interprocess connection: name, entry, port, and
broadcast. Typically, a process with a single code point for receiving messages
uses names, and a process with several reception points uses entries. Ports are
used to target messages that are not necessarily addressed to a particular process.
Broadcasting mechanisms distribute a single message to many \appropriate"
recipients.

Entries serve to sort and �lter messages and to direct messages to particular
segments of code. Names and entries are equivalent: a system that uses names
can be modeled as a single-entry process, and a system with entries can be
modeled as a single name process with a \computed goto" after that name. This
goto would jump to the code originally associated with the entry name. This
latter modeling requires some facility for �ltering requests, such as secretaries or
PLITS-like transaction keys.

Ports di�er from names and entries in that several processes can share a
port. The simplest variety of port receives messages of two kinds: insertions and
removals. An insertion adds a message to the port's set of pending messages; a
removal deletes a message and responds with that message.

Broadcasting takes several forms. The simplest form of broadcasting is a
message directed at a speci�c �nite set of recipients. This is equivalent to a
program that loops, sending one message at each step. A second form of broad-
casting resembles shared memory|information is available to processes but not
channeled directly to them. This can be modeled as a port or, in the unbounded
case, as a sequence of ports. A process seeking the latest broadcast could ask
a broadcast port and be told both the information itself and the name of the
successor broadcast port. The most complicated form of broadcast ties broad-
cast dispatch with pattern-directed reception. Here, processes specify a message
pattern, and the system directs all broadcast messages that match that pattern
to the process. We can model this arrangement by giving each process a secre-
tary process that scans all broadcasts and forwards the appropriate ones to its
executive.

342 contrasts and comparisons

For the moment, we observe that ports model entries by handling insertion
and deletion requests, and that ports model broadcasts by accepting insertions
and responding to requests with both information and the names of successor
ports. Since ports allow message sharing that is unavailable to entries, we give
our basis model ports.*

Communication control presents the widest variety of mechanisms. These
mechanisms are used for three purposes: indeterminacy, �lters, and time-outs.
To handle them, our ports become more active agents| they need programs
of their own. Indeterminacy is usually shown by guarded statements. Our port
has several ways to select a guard clause. For example, it could choose one
at random, survey them in some �xed priority order, or select the earliest
arrival. Our port may need a random-number generator to imitate the �rst
mechanism, but in any case, these can all be expressed by programs within
the port.y

Programs use �lters to select the desired message from among the wait-
ing requests. Typical �lters are the message-sender and transaction-key �lters
in PLITS, the sender and priority �lters of SR and Cell, and the pattern-
matching of Ether. Of course, if messages are to be �ltered by sender,
then message senders must decorate messages with their identities. To ex-
pect the port to do this �ltering requires sending the port a more de-
tailed request. Nevertheless, such �ltering is still easily accommodated in our
model.

Three systems have time-out mechanisms. Receiver time-outs (Exchange
Functions and Ada) require either that the port respond immediately if it is
empty (Exchange Functions and Ada conditional select/entry statements) or
that it be prepared for a second message from the receiver, telling the port to
ignore the initial request (Ada timed select/entry statement). Sender time-outs
(Ada and Argus) permit the sender of a message to remove it from the port.
Thus, \ports that served as entries" (which we originally presumed would allow
only a single process to remove messages) turn out, in certain circumstances, to
allow multiple message removers.

Fairness is a subtle issue. Shared Variables provides a convenient formal-
ism for illustrating some of the di�culties in producing a fair implementation.
If two processes compete to write a variable, the �rst may always write just
before the second. Thus, the second's writing may prevent any other process
from reading the value written by the �rst. The timing and actions of these
two processes may be so regular that this sequencing continues arbitrarily into

* We will later retreat from this assertion back to a simpler name mechanism.
y Two processes can simulate an unbounded random-number generator in the following

fashion: the �rst sends a message asking for a reply to the second process and starts counting.

The �rst process counts until it receives the reply. The usual rules of the temporal independence

of processes imply that a sequence of such counts is both unbounded and random.

contrasts and comparisons 343

the future. We can avoid this dilemma by polling | providing each process
with a variable that it alone writes and having the message receiver check,
in turn, each variable that might contain a message to it. In a dynamic sys-
tem, a process that created other processes would be responsible for polling
them.*

The polling argument shows that if each process continues to make com-
putational progress, strong fairness can be achieved (albeit at the cost of great
synchronization). However, the assumption of computational progress is itself an
assumption of weak fairness. Thus, achieving strong fairness requires assuming
a weakly fair implementation, and a weakly fair implementation can simulate
strong fairness.

A weakly fair implementation that wishes to imitate the potential \unfair-
ness" of an antifair system can randomly select particular messages for delayed
processing. Hence, weak fairness su�ces for imitating the other two kinds of
fairness.

What is the computational meaning of time? Good clocks exhibit certain
behavior. Speci�cally, they produce a monotonically increasing sequence of val-
ues, where these values have a rough correspondence to both the internal clocks
of people and noncomputer clocks. A computer clock thus can be implemented
as a counter that is repeatedly incremented. It may be necessary to occasionally
adjust the values on this clock to re
ect the clocks of the other processes of a
system or external clocks. (Lamport has proposed one algorithm for such syn-
chronization [Lamport 78].) Therefore, we see that temporal constructs do not
have to be primitive in the model, but can be simulated by counting, \clock"
processes.

Similarly, each of the mechanisms for dealing with failure is an algorithm
relying on more primitive events. When presenting a system with failure mecha-
nisms, the authors take pains to describe the algorithms of the failure mechanisms
in terms of more basic notions. In particular, the most fundamental failure no-
tion is that of failure to receive a reply within a speci�ed time. The basis model
can simulate these time-outs with alarm processes.

Our ports have progressed from simple message repositories to elaborate
message handlers, complete with facilities for storing, sorting, and organizing
messages. Thus, the ports themselves have become processes. Who handles mes-
sages for our port/processes? It is inappropriate to imagine, for this port/process,
a port/process of its own. This would create an in�nite regress of port/processes.
Instead, let the port/process handle the messages that come to it in a �rst-come,
�rst-served order, at a single entry point. With this observation we see that
the port/process is just an ordinary process. We have eliminated the need for a

* In his paper on time and clocks, Lamport presents an algorithm for ensuring strong fairness

[Lamport 78]. Unfortunately, his algorithm requires a broadcast to all other processes at each

signi�cant event.

344 contrasts and comparisons

special variety of port. Instead, processes that require a special kind of �ltering
declare a secretary process to do that �ltering for them and have their messages
directed to the secretary.

In summary, our basis has dynamic creation of explicit processes. These
processes communicate asynchronously, receive messages at a single entry, and
enforce weak fairness. It has little else in the way of queue organization. We have
shown how this organization is primitive and natural; it can directly model each
of the other models and languages.

Ideal Language and Heuristic Systems

The discussion of the basis model argued that the appropriate set of primitives
could model any of our systems. In this section we consider the opposite side of
the design question: Which macro operations, built from these primitives, should
an \ideal" system provide? Once again, our discussion parallels our dimensions.

In one sense, such an ideal system leaves the programmer unaware of the
lower-level concepts of programming, such as the existence of processes. Instead,
the programmer describes tasks, and the system arranges its resources to carry
out those tasks concurrently. This resembles the goals of the heuristic systems
of Chapter 18. Those proposals are clearly heading toward the successors of pro-
gramming languages. However, the systems described in that section represent
only the infancy of that technology.

Though it may be pleasant to contemplate the demise of explicit proc-
esses, we recognize that processes are the mainstream of current distributed
language design. If we take it as given that our system must resemble a lan-
guage, what features do we give this \ideal language"? Clearly, we want it to
have the
exibility that comes from dynamic process creation. Asynchronous
communication is (in a naive sense) more general than synchronous, but many
process requests require an answer, much as many procedure calls require that a
value be returned. The syntax of our language should provide a macro opera-
tion (send and immediate receive) to express this variety of interaction. Sim-
ilarly, the multiple choice of guarded commands should expand into a \mul-
tiple send, receive the �rst answer, and cancel the remaining requests." In
an inherently asynchronous system, information
ow at the primitive level is
unidirectional. These macros build bidirectional information
ow into the sys-
tem.

Naming and access mechanisms mark communication control. Providing
processes with explicit entries serves a preliminary sorting function. The var-
ious selection mechanisms (�lters, guards) are all variations of programs that
run through the current input queue to select a particular element. The reso-
lution of this theme is to turn the entries into explicit objects that respond to
insertions and comparisons. Transaction and priority �lters and guards then be-
come simple programs over these queues. That is, we observe that clever ports

contrasts and comparisons 345

can simulate �lter and control mechanisms and provide clever ports as part of
the language.

So far our ideal language is notably similar to our basis model. We diverge
with the items of our third table | time, failure, and fairness. The queueing
mechanism of the ideal language encourages a stronger form of fairness than
weak fairness, though we do not demand a fairness that corresponds with external
time.

Internal time should be implemented with explicit clock processes. A process
that wishes to time-out a request should be able to do so by sending a \with-
drawal" request to the destination port. If the port has not yet sent the request
to the destination process, it should remove that message from the queue and
return an acknowledgment to the original requestor.

A process can recognize a failure in one of two ways. Either a process explic-
itly fails (like the self destruct statement in PLITS) or failure can be inferred
from the lack of response to a request. Explicit failure is a variety of message
that a process sends in response to a request. It can be so encoded. Failure
from a lack of response arises when a request does not receive a response within
some program-determined duration. Such a limit should be potentially explicit
in every request that demands a response. The concurrent subactions of Argus
provide a particularly elegant integration of failure and time-outs. The ideal lan-
guage should provide a library of such algorithms, not limited to atomicity, but
also including the portlike processes discussed above and the resource allocation
algorithms discussed in Chapter 18. Textually, such a language must simplify
the task of interrupting the
ow of program control to handle unusual messages,
much as exception handlers in conventional languages deal with system excep-
tions. Our ideal language will pro�t if it is able to treat its program state as an
object to be manipulated, delayed, and resumed on request.

PROBLEMS

19-1 Identify another common theme in the systems studied and analyze the perspectives on

that theme.

19-2 Design a distributed language or model. Analyze your system in terms of the dimensions

discussed in Section 19-1.

19-3 Design a distributed language or model by \making a choice" for each of the columns of

Tables 19-1, 19-2 and 19-3. Besides syntax, what else do you need to specify for your system?

y 19-4 Implement your language or model design from Exercise 19-3.

19-5 To what extent can the e�ect of �lling split be imitated with an indeterminate-merge,

a demultiplexer, and an (implicit) queue? What are the limitations of such a solution?

19-6 To what extent does the basis model resemble Actors? How and where does it di�er?

19-7 The previous question suggests that an Actor-like system can model the other systems.

Select another one of the systems described in this book and show that that system can serve

as a basis for the others.

19-8 Which systems cannot serve as a basis, and why not?

346 contrasts and comparisons

REFERENCES

[Andrews 83] Andrews, G. R., and F. B. Schneider, \Concepts and Notations for Concur-

rent Programming," Comput. Surv., vol. 15, no. 1 (March 1983), pp. 3{43. Andrews and

Schneider identify several important linguistic mechanisms for concurrency control and

relate several distributed and concurrent languages to these mechanisms.

[Arvind 77] Arvind, and K. P. Gostelow, \A Computer Capable of Exchanging Processors for

Time," in B. Gilchrist (ed.), Information Processing 77: Proceedings of the IFIP Congress

77, North Holland, Amsterdam (1977), pp. 849{854.

[Dennis 74] Dennis, J. B., \First Version of a Data Flow Procedure Language," in B. Robinet

(ed.), Proceedings, Colloque sur la Programmation, Lecture Notes in Computer Science

19, Springer-Verlag, Berlin (1974), pp. 362{376.

[Feldman 79] Feldman, J. A., \High Level Programming for Distributed Computing," CACM,

vol. 22, no. 6 (June 1979), pp. 353{368.

[Filman 80] Filman, R. E., and D. P. Friedman, \Inspiring Distribution in Distributed Com-

puting," Working Papers ACM SIGOPS/SIGPLAN Workshop Fundam. Issues Distrib.

Comput., Fallbrook, California (December 1980), pp. 53{59. Also available as Techni-

cal Report 99, Computer Science Department, Indiana University, Bloomington, Indiana

(December 1980).

[Filman 82] Filman, R. E., and D. P. Friedman, \Models, Languages, and Heuristics for

Distributed Computing," 1982 National Computer Conference, AFIPS Conference Pro-

ceedings vol. 51, AFIPS Press, Arlington, Virginia (1982), pp. 671{678.

[Garman 81] Garman, J. R., \The `Bug' Heard 'Round the World," Softw. Eng. Notes,

vol. 6, no. 5 (October 1981), pp. 3{10. This paper presents an intriguing example of the

complexity of time in multiprocessor systems.

[Lamport 78] Lamport, L., \Time, Clocks, and the Ordering of Events in a Distributed

System," CACM, vol. 21, no. 7 (July 1978), pp. 558{565. Lamport discusses the meaning

of event ordering in a distributed system. He relates the timing of events in separate

processes to the notion of relativistic time, provides a theory of distributed ordering, and

gives an algorithm for strong fairness. Unfortunately, his algorithm requires broadcast

communication to all processes at each event.

[Mohan 80] Mohan, C., \A Perspective of Distributed Computing: Models, Languages, Issues

and Applications," Working Paper DSG-8001, Department of Computer Science, The

University of Texas, Austin, Texas (March 1980). Mohan identi�es several design criteria

for language design and classi�es 16 languages and systems by these criteria.

[Rao 80] Rao, R., \Design and Evaluation of Distributed Communication Primitives," Techni-

cal Report 80-04-01, Department of Computer Science, University of Washington, Seattle,

Washington (April 1980). Rao discusses communication primitives for distributed pro-

gramming. He gives an overview of the communication perspectives of several languages

and language proposals, and presents an example of a sorting program in each.

[Reid 82] Reid, L. G., Control and Communication in Programs, UMI Research Press, Ann

Arbor (1982). Reid develops a model of interprocess communication and proves several

theorems about the various equivalences of the model. Her model is based on explicit,

uniquely named processes that communicate over named identi�ers associated with those

processes (what she call \ports"). There are operations to connect and disconnect the

ports of di�erent processes and to communicate information between processes, both

synchronously and asynchronously.

[Stotts 82] Stotts, P. D., \A Comparative Study of Concurrent Programming Languages,"

SIGPLAN Not., vol. 17, no. 10 (October 1982), pp. 50{61. Stotts applies a dimensional

analysis in studying several concurrent (and distributed) languages.

